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Axial pressures of non-collinear magnets in y-Mn and y F e  

D J Crockfordt, D M Bud and M W Long 
School of Physics, University of Bath, Bath B.42 7AY, UK 

Received 16 September 1991 

Abstract. A modified expression for the axial pressure is derived and implemented 
within an LMTO.ASA framework. The axial pressures of non-collinear antiferromag- 
nets m FCC manganese and iron are calculated and used to make pwdictions on the 
axial distortion and relative stability of the phases. 

1. Introduction 

The FCC alloys of Mn and Fe exhibit a number of phase transitions as a function of 
alloy concentration (e.g. Honda et al 1976). These changes involve both the structural 
parameters and the magnetic order, and while the magnetic phases are known to be 
type I antiferromagnets their exact structures have not been determined conclusively. 
It is believed (Uchishiba 1971, Endoh and Ishikawa 1971, Tsunoda et Q/ 1987, Long et 
d 1987) that some of these phases may exhibit non-collinear magnetism, there being 
no unique axis for spin quantization. It was shown in a previous paper (Crockford et 
a/ 1991, hereafter referred to as I) how these non-collinear structures may be handled 
in an LMTO-ASA calculation (Andenen 1975) and attention was focused on three 
representatives, the single, double and triple spin density waves, referred to as the 
SSDW, DSDW and TSDW respectively. The arrangements of spins for these cases are 
shown in figure 1, which depicts an octant of the cubic unit cell. The SSDW is the 
simple collinear antiferromagnet characterized by a single wavevector Q, whereas the 
DSDW and TSDW are true non-collinear magnets, characterized by two and three Q 
vectors respectively. 

i 

S S D W  OSDW 

Figure 1. Spin arrangements 
(6) DSDW and (c )  TSDW antiferromagnets. 

an octant of the FCC lattice for the (a) SSDW. 
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It is clear from figure 1 that while the magnetic structure of the TSDW retains cubic 
symmetry, those of the SSDW and DSDW do not, and therefore allow for a magnetically 
driven tetragonal distortion. Experimentally, the SDW phases of Mn and Fe alloys 
appear to distort in a manner consistent with a focalized spin picture. In the SSDW a 
tetragonal distortion to c/a < 1 is observed (Smith and Vance 1969). The result of such 
a distortion is clearly to make the parallel spins of the ferromagnetic planes further 
apart and adjacent planes, of opposite spin, closer together (see figure 1). Conversely, 
in the DSDW the lattice distorts with c/a > 1 (Uchishiba 1971). The phases which 
remain cubic can similarly be identified with the TSDW structure (Endoh and Ishikawa 
1971). In this paper the self-consistent potentials obtained in I will be used as input 
for the calculation of axial pressures, i.e. the tendency for the cubic lattice to favour 
a tetragonal distortion (Cade 1981). The results will be used to investigate the effects 
of the magnetic order on the crystal structure. 

The most straightforward way to determine the lattice constant a of a material 
using LMTO-ASA is to plot the total energy for a number of different values of a and 
look for a minimum. However, the total energy difference due to a small change in 
a is very small compared to the energies themselves. To avoid having to obtain total 
energies accurate to many decimal places it is usual to work with the pressure rather 
than the total energy. The bulk or isotropic pressure (Liberman 1971) can be obtained 
from the derivative of the Kohn-Sham energy (Kohn and Sham 1965) with respect to 
the lattice constant and corresponds to the outward pressure exerted on the boundaries 
of the unit cell. Similarly we can define an axial pressure using the derivative of the 
Kohn-Sham energy with respect to e/a (Cade 1981). Evaluated at constant volume, 
this corresponds to a pressure on the unit cell boundaries that acts so as to change 
only the C/Q ratio. The equilibrium value of o or c/a is determined by finding the value 
for which the respective pressure is zero. In practice this procedure works well for the 
lattice constant a (Pettifor 1977, Andersen et ai 1985) but does not work in general 
for the c/o ratio (Crockford 1990). One reason for this failure lies in the approximate 
treatment given to electrostatic forces in the ASA. The importance of these forces for 
non-isotropic distortions has been demonstrated by Christensen (1984). As far as the 
axial pressure is concerned the approximation of the ASA lies in the replacement of 
the Wigner-Seitz cells by neutral Wigner-Seitz spheres. In the case of a magnetically 
driven tetragonal distortion we can avoid these problem by working only with the 
reference cubic structures shown in figure 1, for which there is no charge contribution 
to the axial pressure. Any axial pressure we find in the SSDW or DSDW phases can 
then be attributed entirely to the magnetism. Although no attempt is therefore made 
to find the equilibrium c/a ratio by performing calculations on non-cubic structures, 
this can be estimated from the axial pressure in the ‘ideal’ structure. 

The first self-consistent LMTO-ASA calculation for a SSDW structure was performed 
by Cade (1980) on Mn. Cade went on to perform an ASA axial pressure calculation 
for the SSDW and obtained the correct direction for the distortion (Cade 1981) despite 
the approximation implicit in the ASA. In this paper we calculate the value for the 
SSDW in both Mn and Fe wing a modified expression for the axial pressure, and we 
also calculate values for the non-collinear DSDW and TSDW. Substituting these into a 
simple elasticity model we obtain estimates of the equilibrium distortion and predict 
the relative stabilities of the phases of Mn. 
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2. A first-order expression for the axial pressure 

In this secbion we evaluate the axial pressure in the ASA and arrbe a t  an expression 
which is similar to Cade's (1981) result, but involves a different sd contribution and 
is correct to a higher order in the non-spherical component of the charge density. 

The basic definition of the axial pressure that we adopt is due to Cade (1981): 

1 d E  
GV dA 

p = 

where V is the volume of the unit cell, E is its Kohn-Sham energy and A is the 
distortion parameter. The derivative of the Kohn-Sham enwgy with respect to a 
given strain is readily obtained (Crockford 1990) from a scaling-type calculation (Fock 
1930), provided the lattice can be divided into regions that are electrically neutral. In 
the ASA we assume that these regions are spherical. The derivative can be re-expressed 
as a surface integral (Liberman 1971) using the sort of argument presepted by Slater 
(1933) in his proof of the virial theorem, and substituting into (1) frpm which we 
obtain 

where the i-summation is over the occupied valence bands, Ili is the wavefunction for 
band i, n ( ~ )  is the charge density and s is the sphere radius. In (2) and in what follows 
the summations over spin and site are implicit. The E in ( 2 )  is the strain tensor and 
for a volume-conserving axial distortion, can be written as 

E = ( ;  -1 ;l 0 0 ;) 
(3) 

The normalization of L is chosen for consistency with (1). 
To determine P we now have two integrals to evaluate. The first can be approached 

by directly inserting the expansion for t+bi in terms of LMTO basis states, and using the 
Schrodinger equation to eliminate second derivatives. We define a generalized density 
of states 

where (for a given i) 
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and uUm is the eigenvector corresponding to Ei,. These quantities correspond to 
the ‘axial weights’ given by Cade (1981) and are the only combinations which are 
consistent with the tetragonal distortion of (3). They would be zero for a spherically 
symmetric charge density. The first integral in (2) can now be written as 

D J Crockford et a1 

+ n,d& [Dz + D2 - 6 + s2(E - u ~ R ) ]  

+ ns,&+2 [-D& + D, - 20,  C 3  - s2(E - ue,)]} (8) 

where Dj is the logarithmic derivative of the LMTO basis function xj at the sphere 
(Andersen 1975). This expression disagrees with Cade (1981), who &ves the coefficient 

The second integral in (2) involves the exchange correlation cxo which is a non- 
linear function of .(.). In the spirit of the ASA we assume that the non-spherical 
component 6n of n is small, and expand n to first order about the spherical average 
nASA 

of nsd as 4042  ( 0 0  - 0,). 

n = nAS* + 6n + O(6n)’. (9) 

Differentiating n2 dc,,/dn with respect t o n  and using the definition (Kohn and Sham 
1965) of uyc we obtain 

Following the same procedure as with the first integral leads to a final expression 
(more details of the derivation may be found in Crockford (1990)) 

p = -  s d E  [71p,&(D: + D, - 2 + A) + ndd&(@ + Dz - 6 + A)  

+ ~ s d ~ o + z ( - ~ o ~ 2  + D2 - 20,  + 3 - A)] (11) 

where A is given by, 

E - u,,(s) + nASA(s) 

Cade’s (1981) result is similar to this but uses E,, instead of uxc in (1‘4, indicating 
that it is correct only to zeroth order in bn. 

3. Implementation 

The axial pressures for the SSDW, DSDW and TSDW in Mn and Fe were calculated 
from the self-consistent potentials obtained in I. To do this the LMTo program was 
modified to calculate the axial weights (5)-(7) rather t h a n  spherical weights (Skriver 
1984), and the code to evaluate (11) was inserted after the charge density routine (the 
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charge density being needed to calculate vXJ. It should be noted that the calculk 
tion of the axial weights does not interfere with the representation of the SDW: the 
former involves manipulation of the eigenvectors using lm labels only while the latter 
involves only the spin/sublattice labels (see I). As previously the k-space integration 
was performed over the orthorhombic wedge of the Brillouin zone with a mesh of 64 
points. 

The generalized densities of states (4) being available, evaluation of (11) can be 
done using a moment expansion (Skriver 1984). Recognizing that each term in (11) is 
of the form 

E- J _ ,  dEnfl~(E)f/l, .(E,s) (13) 

wheref,,,(E,s) 
to obtain 

f (bf ,$f , ,&,&),  wecanexpand flit asaTaylorseriesabout E = E, 

Here the coefficient gn is the nth derivative of fir, with respect to E and is a function 
of and df,, and their energy derivatives, evaluated at (E,,,s). By terminating the 
expansion at third order it is po’ssible to evaluate the 9,s in terms of the standard 
LMTO potential parameters (Andersen 1975). In all cases treated the expansion was 
very well converged when taken to this order. 

3. Results and discussion 

The results for the axial pressures are given in table 1 .  The values for Mn are clearly 
in accord with the predictions of the localized electron picture: the SSDW tends to 
shrink along the c axis, the DSDVV to expand, and the TSDW remains cubic. Indeed, 
the fact that the magnetic space group of the TSDW is cubic implies that the pressure 
for the TSDW is identically zero, as there can be no driving force for an axial distortion 
(this also follows from the form sof the axial weights-see Cade (1981)). The small 
value we find arises from the imperfect Brillouin zone integration. Using the value for 
the TSDW in Mn as a yardstick we should probably take the pressure for the SSDW in 
Fe to be also zero. Hence, the only non-zero pressure among the Fe materials belongs 
to the DSDW, and its sign is not consistent with the localized picture. However, even 
here the value is an order of magnitude less than the corresponding pressure in Mn. 
By the same argument used for the TSDW the pressures for paramagnetic Mn and Fe 
are also forced to be zero. The non-zero values obtained are therefore purely magnetic 
in origin. 

Table 1. Axial prersuns for SDW mat&& (kba) 

SSDW DSDW TSDW 
~~ 

Mn -11.596 4.488 0.049 
Fe -0.078 -0.248 0.001 
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The axial pressures can be used in a classical elasticity model (see appendix) to 
estimate the deviation of the c/a ratio from the cubic value at equilibrium (table 2), 
and the energy saving associated with it. To do this we require experimental values for 
the elastic constants of FCC Mn and Fe, hut these have not been measured because the 
7 phases are not sufficiently stable. We therefore resort to using the elastic constants 
for neighbouring Ni, for which C' = (Cll - C,&Z = 470 kbar (Smithell 1983). 
Although the values for the deviation in table 2 are therefore no more than rough 
estimates, the results for the SSDW and DSDW in Mn are in fair agreement with the 
respective experimental estimates of -6% (Cowlam et al 1977, Smith and Vance 1969) 
and 1.5% (for Mn with 18.5% Ni: Honda ef al 1976) while for Fe a distortion from the 
cubic structure does not appear to have been reported. Adding the energy savings to 
the ASA total energies for the hln phases at ideal c/a (Crockford e t  al 1991) we obtain 
the equilibrium total energies of table 3. From these we deduce that the most stable 
phase for pure FCC Mn would be SSDW, in agreement with experimental data (Endoh 
and Ishikawa 1971). 

Table 2. Estimated % deviation form c/a = 1. 

SSDW DSDW TSDW 

hln -3.8 1.4 0.02 
Fe -0.02 -0.08 0.0003 

Table 3. Estimated equilibrium total energy for M n  syslems. 

SSDW DSDW TSDW 

Told energy (Ryd) -1c6.127 -.126.126 -126.125 

4. Conclusion 

The main point to emerge from this work is that when applied to magne t i c  systems 
the ASA axial pressure gives very revonable results. Given that the axial pressures 
exhibited in the materials treated are a consequence of the magnetic order only it is 
perhaps not surprising that the essentially charge-dependent inaccuracies of the ASA 
should not be relevant. We find a considerable tendency for the SSDW and DSDW 
structures in FCC Mn to distort, while the axial pressure in FCC Fe is essentially zero. 
It is also interesting to  note that our results for hln, which are obtained within the 
itinerant electron framework provided by spin-density functional theory (von Barth 
and Hedin 1972), give tetragonal distortions which are consistent with a picture of 
localized spins attempting to  bring favourably aligned neighbours closer and push 
unfavourable neighbours apart. 
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Appendix 

Consider the second-order expansion of the classical elastic energy about equilibrium 
(Kittel 1968) 

where the Cijs are the elastic constants and the eis are the strain components. For a 
volume-conserving axial strain we have e, = e,  = - A  and e3 = 2X, so (Al) becomes 

(A2) 
E - = 6X2C’ where C’ = i(C,l - C12). V 

Differentiating (A2) with respect to X and substituting fiom (1) gives 

Putting 

c’ = e(l + 2X) (A41 

and 

a’ = a(l - A) (A51 

we can derive an expression for X in terms of c /a ,  namely 

Given the axial pressure P for c/a = 1 we can use (A3) and (A6) to estimate the 
deviation from c /a  = 1 at equilibrium, and (A2) and (A3) to obtain the corresponding 
energy saving. 
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